

FUTURE EUV OBSERVATIONS OF THE INTERSTELLAR MEDIUM

M. P. Kowalski (NRL), K. S. Wood (NRL), M. A. Barstow (U. Leicester), R. G. Cruddace (NRL)

WHY LOOK IN THE EUV?

- Operating Regime ~50-350 Å (soft X-ray/EUV)
 - Interstellar Medium (ISM) opacity low ~100 pc, patchy ~
 - Extragalactic for <120 Å
 - Absorption features diagnose ISM*
- WFC, EUVE catalogs: ~1100 EUV sources
 - Statistics, Probe ISM structure, Timing
 - Most numerous: stellar coronae, white dwarfs
 - All other source classes represented
 - Unexpected: B stars, AGNs, clusters of galaxies
- Bulk of emission of 10⁶ K plasmas in EUV
 - CHIPS Waveband 90-260 Å

EUV SPECTROCOPY: LINES

- Wealth of Lines (left)
 - Span 0.1x10⁶ to 20x10⁶ K
 - All cosmologically interesting elements
 - H, He, C, N, O, Ne, Mg, Si, S, Fe
 - Broad Ionization range
 - e.g., Fe III XXIV
 - mostly L-shell
 - complements X-ray K-shell
- Critical Diagnostics Not found at other λ
 - e.g., bound-free continuum of He II (<228 Å) and Ly series (228-304 Å) are ONLY useful diagnostics of ISM He II density

MULTILAYER COATINGS: TECHNICAL KEY TO HIGH EUV SENSITIVITY

- Alternating layers of absorbing and transmitting materials
- Function as synthetic Bragg crystals
- At near-normal incidence
 - EUV reflectance enhanced 100x or more: 70% reflectance achieved
 - Avoid aberrations associated with grazing incidence: Low instrument size, weight, cost
- Fabrication Mature ("atomic engineering")
 - Magnetron Sputtering, Thermal Evaporation

MULTILAYER GRATING DESIGNS

- Obeys Grating Equation: $m\lambda = d (\sin \alpha \pm \sin \beta)$
- Spectral Resolution unaffected
 - Diffraction-limited R~14,000 obtained
- Measured Efficiency = Multilayer Reflectance x Groove Efficiency
- Theoretical Maximum Groove Efficiency
 - 40.5% Laminar groove profile (right) in 1st order only
 - ~100% Blazed groove profile (left) in order of choice
- Fabrication Techniques Mature
 - Best: Holographic Ion-etched Gratings
 - Accurate Groove Profile
 - Smooth Surface

MATURE TECHNOLOGY

- Computational Models
 - Design grating or mirror substrate
 - Design multilayer-coating with high reflectance in waveband of interest
- Uncoated substrate procured commercially (e.g., Zeiss)
 - Surface characteristics obtained using atomic force microscope (AFM)
 - Optical performance determined using synchrotron radiation
- Multilayer coating applied to substrate and witness flat
 - Troy Barbee, LLNL (world expert)
- Repeat performance measurements on multilayer-coated optic
- Multilayer-coated optic mounted in instrument
 - Determination of spatial or spectral resolution
 - Flight

Fig 1: Explorer Head

J-PEX SOUNDING ROCKET PAYLOAD: GRATINGS

- 4 Identical Holographic Ion-Etched Laminar Multilayer Gratings
 - Each 16x9 cm (bottom), 3600 grooves/mm, fabricated at Zeiss
 - Very smooth: AFM roughness 3-4 Å rms (left)
 - Measured efficiency: 10.3% (right)
 - Groove efficiency: 34% (40.5% theoretical max)
 - Uniformity: 6% across surface

J-PEX FLIGHT 36.195

- 21 February 2001 9:55 pm MST: WSMR (left)
 - Near perfect flight with 300 seconds on target
 - EUV Multilayer Grating Spectrometer: Resolution ~3,000, Effective Area ~3 cm²
 - Raw data image (right): 4 spectra, 3 detector calibration points, EUV image
 - First Successful High-Resolution EUV spectrum of an Astrophysical Object

J-PEX SCIENCE GOALS

Motivation

- WD endpoint of stellar evolution: 90% of all stars in galaxy
 - Enrich ISM
 - Possible progenitors of SNe la (CVs)
- Two cooling sequences for WD observed on H-R diagram
 - DA (hydrogen rich)
 - DO and DB (helium rich)
 - Gap in evolution path (T_{eff}) taken as evidence for temporary migration to DA path
- Detection of He in DA supports migration theory
 - EUV most sensitive region, requires high resolution
 - Models
 - Homogeneous
 - Stratified
 - Levitation
 - Diffusion

Goals

- Detect He in photosphere of DA WD G191-B2B
- Determine amount of ISM He II
- Record absorption lines of heavier elements (C, N, O, Fe)

J-PEX SPECTRUM RESULTS

Final Result

- Data (black) and best-fit model (red) of photosphere+ISM: good agreement
- Cluster of O IV lines @ 233.5 Å detected
- Broad feature 227-232 Å characteristic of overlapping ISM He II lines on continuum at series limit
- No significant detection of He II photosphere lines, e.g.,@ 243.026 Å or 237.331 Å, BUT...

Initial Modeling

- Homogeneous composition
- T_{eff} = 54,000 K, log g = 7.5, non-LTE code TLUSTY, use XSPEC with *J-PEX* response
- Fixed: H I (ISM)=2.15x10¹⁸ cm⁻², He I (ISM)=2.18x10¹⁷ cm⁻², photosphere heavy element abundances
- Best-fit (99%): $N_{\text{He II}}(\text{ISM}) = 5.97 (5.76-6.18) \times 10^{17} \text{ cm}^{-2}$, $n_{\text{He}}(\text{photosphere}) = 1.60 (1.31-1.91) \times 10^{-5} \text{ cm}^{-2}$
- Indirect detection of photospheric He
- High Ionization Fraction (~0.73) compared to Local ISM (0.25-0.50)

Further Modeling

- Stratified models do not produce better fit
- Additional ISM component (Local Interstellar Cloud) lowers lonization Fraction (consistent w

J-PEX APPROVED REFLIGHT

- Technical Improvements
 - Replace Spherical Laminar Gratings with Parabolic Blazed Gratings
 - Smooth and near-ideal groove profile
 - 50% Groove Efficiency (Previous 27%)
 - Parabolic figure reduces grating aberrations
 - New grating mounting eliminates grating stress
 - New Microchannel Plate Detector
 - KBr photocathode achieves 22% quantum efficiency (Previous 14%)
 - High resolution crossed grid anode achieves 18 micron spatial resolution
 - New rocket booster provides 25% increase in observation time
- Net Performance Increase from Technical Improvements
 - 7 cm² Effective Area x 380 sec: x4 improvement in sensitivity
 - Spectral resolution 3500-5100: 50% improvement
- Launch: 2 Oct 2008
- Target: White Dwarf Feige 24
- Science Goals
 - Unambiguous detection of photospheric He (243.026 Å): more likely
 - Measure at quadrature
 - Distinguish ISM and photospheric components
 - Investigate Common Envelope evolution in binary White Dwarf system
 - Measure H I layer mass
 - Test accuracy of atomic data and reliability of atomic data calculations (millions of lines)

FUTURE: J-PEXsat

- New low-cost launch vehicles create opportunities for sounding rocket payloads into orbit
 - Left: SpaceX Falcon 1 (2-stage liquid-propellent)
 - Right: ATK (Thiokol) development of ALV (3-stage solid-propellent)

First Falcon 1 static firing at Vandenberg

Falcon 1 on launch pad at Kwajalein

Flight test of ASAS™ 21-120 rocket motor

The Local Bubble & Beyond II, 21-24 April 2008, Philadelphia, USA

WALLOPS LAUNCH ORBITAL CAPABILITY

VEHICLE CONFIGURATION ALV 2

Fairing may not be necessary for sounding rocket payloads mounted in a structural shell designed to withstand loads incurred during launch, e.g. Black Brant 22-inch diameter skin.

J-PEXsat STRAWMAN CONFIGURATION AND MISSION

NASA 36.195 payload (2001)

- 3-month mission
 - ~30 White Dwarf stars
 - Observe each target 2 days (576 sounding rockets!)
- Payload preparation and vehicle integration at NASA Wallops, eastward launch into LEO
- Magnetic torque maneuver to next target
- Arcsec pointing system: new Celestial ACS + ST5000 tracker
- Fine pointing with gas jets: ACS gas (C₂H₆?) stored as liquid.
- Data stored in onboard memory: Dump data to Wallops (S-Band) 2500 kbit/sec in one 100s pass
- Power system: solar cell array (600W) with rechargeable battery
- Temperature control: multilayer insulation blanket and radiation cooling panels exposed by louvers
 The Local Bubble & Beyond II, 21-24 April 2008, Philadelphia, USA
 Slide 15

Strawman configuration for an orbital mission

CANDIDATE WHITE DWARFS

EUVE	type	common name	time(ks)	photons	ISM?	comment	EUV	opt
J1316+290	DAw	HZ 43	8	271.0088	ISM	Hot DA 3He measurement	3E+05	12.56
J1257+220	DAw	EG 187	57	23.6436	ISM	Int. temp DA/metals	4148	13.4
J2312+107	DAw	GD 246	400	144.04	ISM	Hot DA/metals	3601	13.11
J0505+528	DAw	G191 B2B	4	1.0344		DA/metals	2586	11.78
J1032+534	DA	RE J1032+532	270	62.694	ISM	Pure H DA	2322	14.5
J2009-604	DA	RE J2009-602	2000	451	ISM	Pure H DA	2255	
J2156-546	DA	RE J2156-543	400	87.24	ISM	Pure H DA	2181	14.3
J0457-281	DA	RE J0457-281	10	1.936		Very hot DA/metals	1936	14
J0053-330	DA	G659	200	35.74	ISM	pure H	1787	13.38
J0552+158	DAw	GD 71	200	30.94	ISM	pure H, low nH	1547	13.06
J2214-493	DA	RE J2214-491	6.7	0.73499		Very hot DA/metals	1097	11.7
J1059+514	DA	LB 01919	2300	233.91	ISM	Pure H DA	1017	16.8
J2112+500	DAw	GD 394	400	39.24	ISM	Int. temp DA/metals	981	13.09
J1236+479	DA	PG 1234+482	560	53.256		Hot DA/metals	951	14.38
J0029-634	DA	RE J0029-632	4000	319.2		DA H/metals	798	15
J2324-547	DA	RE J2324-547	2000	120.2	ISM	Hot DA/metals	601	
J1847+019	DA	BPM 93487	80	4.616	ISM	Pure H DA	577	12
J1126+186	DAw	PG 1123+189	800	35.6	ISM	Hot DA/metals	445	13.11
J0348-009	DA	GD 50	38	1.634		High mass DA	430	14.05
J0623-376	DA	RE 0623-374	20	0.802		very hot DA/metals	401	12
J2334-472	DA	RE J2334-471	67	2.0636	ISM	Hot DA/metals	308	13.1
J0654-021	DAw	GD80	1700	37.4		Int. temp DA, metals?	220	14.82
J0503-288	DO	RE 0503-285	40	0.308		Hot DO/metals, He rich	77	13.9

EUVE	types	name	time(ks)	photons	ISM	comment	EUV	opt
J0645-167	DA+AIV	Sirius A,B	570	415.929	ISM	nearest WD	7297	8.44
J0515+326	DA+F	HD33959C	260	54.132		DA + F binary	2082	7.95
J0235+037	DA+dM1.5	Feige 24	6.7	0.72427	ISM	DA/metals + dM binary	1081	12.4
J0350+172	WD+k0	∨471 Tau	130	9.62		DA+ dK binary	740	9.2
J0134-161	DA+dM	GD 984	1200	81.96		DA+dM binary	683	13.8
J2126+193	DA+A8m	HR 8210	440	27.544		DA + A	626	6.07
J0459-102	DA+K	HR1608	1100	16.39	ISM	DA + K binary	149	5.38

SIMULATIONS OF HOT WHITE DWARFS

Science program

- Survey DA White Dwarfs (isolated and binaries): He, metals (with FUV)
- Control: "pure" H White Dwarfs

Figure A. Simulated 4000 sec exposure of the DA WD+dM binary Feige 24, for H layer masses of 10^{-13} (red) and 10^{-14} (black) M_☉. The green histogram shows the EUVE observation. Poisson noise has been included, but all fluctuations are real spectral features.

Figure D. Simulated 10 ksec observation of G191-B2B showing the absorption line strengths for a stratified (black) and homogeneous (red) distribution of Fe.

SUMMARY

- Important Science
 - White Dwarfs: End Points of Stellar Evolution
 - Interstellar Medium: Sources of Ionization and Heating
 - EUV critical window: atomic processes of million-degree plasmas
- Need Sensitive High Resolution Spectroscopy
 - Spectral Resolution 3500-5100, Effective Area ~7 cm²
 - Multilayer Optics Technology Mature
- NASA Programmatics & Cost
 - SALMON
 - Possible joint mission with DoD

